Copied to
clipboard

?

G = C4223D6order 192 = 26·3

21st semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4223D6, C6.732+ (1+4), (C2×Q8)⋊12D6, C22⋊C435D6, (C4×C12)⋊33C22, D63Q831C2, (C2×D4).111D6, C232D6.6C2, C4.4D413S3, (C6×Q8)⋊15C22, C422S336C2, D6.23(C4○D4), C23.9D644C2, (C2×C6).223C24, C4⋊Dic342C22, Dic34D432C2, C2.76(D46D6), (C2×C12).632C23, Dic3⋊C467C22, D6⋊C4.136C22, (C4×Dic3)⋊57C22, (C6×D4).211C22, C23.8D640C2, (C22×C6).53C23, C23.55(C22×S3), C38(C22.45C24), C23.23D625C2, C6.D434C22, (S3×C23).66C22, C22.244(S3×C23), (C22×S3).217C23, (C2×Dic3).255C23, (C22×Dic3)⋊28C22, C2.79(S3×C4○D4), (S3×C22⋊C4)⋊19C2, C6.190(C2×C4○D4), (C3×C4.4D4)⋊15C2, (S3×C2×C4).215C22, (C2×C4).74(C22×S3), (C3×C22⋊C4)⋊31C22, (C2×C3⋊D4).61C22, SmallGroup(192,1238)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4223D6
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — C4223D6
C3C2×C6 — C4223D6

Subgroups: 672 in 248 conjugacy classes, 95 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×11], C22, C22 [×18], S3 [×4], C6, C6 [×2], C6 [×2], C2×C4, C2×C4 [×4], C2×C4 [×13], D4 [×5], Q8, C23 [×2], C23 [×7], Dic3 [×6], C12 [×5], D6 [×4], D6 [×8], C2×C6, C2×C6 [×6], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×10], C4⋊C4 [×8], C22×C4 [×5], C2×D4, C2×D4 [×2], C2×Q8, C24, C4×S3 [×6], C2×Dic3 [×6], C2×Dic3, C3⋊D4 [×4], C2×C12, C2×C12 [×4], C3×D4, C3×Q8, C22×S3 [×2], C22×S3 [×5], C22×C6 [×2], C2×C22⋊C4 [×2], C42⋊C2 [×2], C4×D4 [×2], C22≀C2, C22⋊Q8 [×2], C22.D4 [×3], C4.4D4, C422C2 [×2], C4×Dic3 [×2], Dic3⋊C4 [×6], C4⋊Dic3 [×2], D6⋊C4 [×6], C6.D4 [×2], C6.D4 [×2], C4×C12, C3×C22⋊C4 [×4], S3×C2×C4 [×4], C22×Dic3, C2×C3⋊D4 [×2], C6×D4, C6×Q8, S3×C23, C22.45C24, C422S3 [×2], C23.8D6 [×2], S3×C22⋊C4 [×2], Dic34D4 [×2], C23.9D6 [×2], C23.23D6, C232D6, D63Q8 [×2], C3×C4.4D4, C4223D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×4], C24, C22×S3 [×7], C2×C4○D4 [×2], 2+ (1+4), S3×C23, C22.45C24, D46D6, S3×C4○D4 [×2], C4223D6

Generators and relations
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=ab2, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 31 7 25)(2 35 8 29)(3 33 9 27)(4 34 10 28)(5 32 11 26)(6 36 12 30)(13 38 16 43)(14 47 17 42)(15 40 18 45)(19 44 22 39)(20 37 23 48)(21 46 24 41)
(1 21 4 13)(2 19 5 17)(3 23 6 15)(7 24 10 16)(8 22 11 14)(9 20 12 18)(25 41 28 43)(26 47 29 39)(27 37 30 45)(31 46 34 38)(32 42 35 44)(33 48 36 40)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 12)(5 11)(6 10)(13 15)(16 18)(20 24)(21 23)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 41)(38 40)(43 45)(46 48)

G:=sub<Sym(48)| (1,31,7,25)(2,35,8,29)(3,33,9,27)(4,34,10,28)(5,32,11,26)(6,36,12,30)(13,38,16,43)(14,47,17,42)(15,40,18,45)(19,44,22,39)(20,37,23,48)(21,46,24,41), (1,21,4,13)(2,19,5,17)(3,23,6,15)(7,24,10,16)(8,22,11,14)(9,20,12,18)(25,41,28,43)(26,47,29,39)(27,37,30,45)(31,46,34,38)(32,42,35,44)(33,48,36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,15)(16,18)(20,24)(21,23)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48)>;

G:=Group( (1,31,7,25)(2,35,8,29)(3,33,9,27)(4,34,10,28)(5,32,11,26)(6,36,12,30)(13,38,16,43)(14,47,17,42)(15,40,18,45)(19,44,22,39)(20,37,23,48)(21,46,24,41), (1,21,4,13)(2,19,5,17)(3,23,6,15)(7,24,10,16)(8,22,11,14)(9,20,12,18)(25,41,28,43)(26,47,29,39)(27,37,30,45)(31,46,34,38)(32,42,35,44)(33,48,36,40), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,12)(5,11)(6,10)(13,15)(16,18)(20,24)(21,23)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48) );

G=PermutationGroup([(1,31,7,25),(2,35,8,29),(3,33,9,27),(4,34,10,28),(5,32,11,26),(6,36,12,30),(13,38,16,43),(14,47,17,42),(15,40,18,45),(19,44,22,39),(20,37,23,48),(21,46,24,41)], [(1,21,4,13),(2,19,5,17),(3,23,6,15),(7,24,10,16),(8,22,11,14),(9,20,12,18),(25,41,28,43),(26,47,29,39),(27,37,30,45),(31,46,34,38),(32,42,35,44),(33,48,36,40)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,12),(5,11),(6,10),(13,15),(16,18),(20,24),(21,23),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,41),(38,40),(43,45),(46,48)])

Matrix representation G ⊆ GL6(𝔽13)

010000
100000
001000
000100
000050
000005
,
800000
080000
0012000
0001200
0000111
0000012
,
100000
0120000
0001200
0011200
000010
0000112
,
100000
010000
0011200
0001200
0000120
0000121

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,11,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,1,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,12,12,0,0,0,0,0,1] >;

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O6A6B6C6D6E12A···12F12G12H
order122222222234444444444444446666612···121212
size111144666622222444666612121212222884···488

39 irreducible representations

dim1111111111222222444
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D42+ (1+4)D46D6S3×C4○D4
kernelC4223D6C422S3C23.8D6S3×C22⋊C4Dic34D4C23.9D6C23.23D6C232D6D63Q8C3×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8D6C6C2C2
# reps1222221121114118124

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{23}D_6
% in TeX

G:=Group("C4^2:23D6");
// GroupNames label

G:=SmallGroup(192,1238);
// by ID

G=gap.SmallGroup(192,1238);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,387,100,346,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽